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Abstract. We review the recent approach of correlation based networks of financial equities. We investigate
portfolio of stocks at different time horizons, financial indices and volatility time series and we show
that meaningful economic information can be extracted from noise dressed correlation matrices. We show
that the method can be used to falsify widespread market models by directly comparing the topological
properties of networks of real and artificial markets.

PACS. 89.75.Fb Structures and organization in complex systems – 89.75.Hc Networks and genealogical
trees – 89.65.Gh Economics; econophysics, financial markets, business and management

1 Introduction

The study of topological properties of networks has re-
cently received a lot of attention. In particular, it has
been shown that many natural and social systems dis-
play unexpected statistical properties of links connecting
different elements of the system [1,2] and cannot therefore
be described in terms of random graphs [3]. The topolog-
ical properties of several graphs describing physical and
social systems have been recently investigated. Examples
are the World Wide Web [4], Internet [5,6], and social
networks [7]. In the networks investigated in these papers
(and in many others) the links represent relation between
nodes which are either present or absent in a given in-
stant of time. By contrast we have recently started the
investigation of correlation based networks, i.e. networks
used to visualize the structure of pair cross correlations
among a set of time series. From a set of n time series one
can extract the correlation coefficient between any pair of
variables. If we identify the different time series with the
nodes of the network, each pair of nodes can be thought
to be connected by an arc with a weight related to the
correlation coefficient between the two time series. The
network is therefore completely connected. By introduc-
ing a suitable filtration of the network one can remove the
less relevant information by removing the weakest links.
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In fact, it is known that the finiteness of time series can
introduce spurious correlation. In principle there are many
different ways of filtering the correlation matrix in order to
obtain noise filtered information. In this context we have
focused mainly on financial markets [8,9] and on a partic-
ular type of network that can be obtained form the cor-
relation matrix, specifically the minimum spanning tree.
Spanning trees are particular types of graphs that connect
all the vertices in a graph without forming any loop.

The presence of a high degree of cross-correlation be-
tween the synchronous time evolution of a set of equity
returns is a well known empirical fact observed in finan-
cial markets [10–12]. For a time horizon of one trading
day correlation coefficient as high as 0.7 can be observed
for some pair of equity returns belonging to the same eco-
nomic sector.

The study of cross-correlation of a set of financial equi-
ties has also practical importance since it can improve the
ability to model composed financial entities such as, for
example, stock portfolios. There are different approaches
to address this problem. The most common one is the
principal component analysis of the correlation matrix of
the data [13]. Recently an investigation of the properties
of the correlation matrix has been performed by physi-
cists by using the perspective and theoretical results of
the random matrix theory [14,15]. As mentioned above,
another approach is the correlation based clustering anal-
ysis which allows to obtain clusters of stocks starting from
the time series of price returns. Different algorithms exist
to perform cluster analysis in finance [8,16–20].

In previous work, some of us have shown that a specific
correlation based clustering method gives a meaningful
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taxonomy for stock return time series [8,21,22], for mar-
ket index returns of worldwide stock exchanges [23] and
for volatility increments of stock return time series [24].
Here we review the results obtained in these previous
studies and discuss them from a unified perspective.
Specifically, Section 2 discusses the correlation based clus-
tering method, Section 3 focuses on the properties of net-
works detected in a portfolio of stocks when stock returns
are sampled at different time horizons. Section 4 discusses
the properties of networks observed by investigating stock
indices of stock exchanges located all over the world and
Section 5 discusses the case of financial networks obtained
starting from volatility time series. Section 6 is about the
comparison of topological properties of real data with the
ones of simple and widespread models of market activity.
Finally, in Section 7 we draw our conclusions.

2 A financial network obtained
by a correlation-based filtering procedure

In reference [8], it has been proposed a correlation based
method able to detect economic information present in a
correlation coefficient matrix. This method is a filtering
procedure based on the estimation of the subdominant ul-
trametric [25] associated with a metric distance obtained
form the correlation coefficient matrix of set of n stocks.
This procedure, already used in other fields, allows to ob-
tain a metric distance and to extract from it a minimum
spanning tree (MST) and a hierarchical tree from a corre-
lation coefficient matrix by means of a well defined algo-
rithm known as nearest neighbor single linkage clustering
algorithm [26]. This allows to reveal geometrical (through-
out the MST) and taxonomic (throughout the hierarchical
tree) aspects of the correlation present among stocks.

The network is obtained by filtering the relevant infor-
mation present in the correlation coefficient matrix of the
original time series of stock returns. This is done (i) by
determining the synchronous correlation coefficient of the
difference of logarithm of stock price computed at a se-
lected time horizon, (ii) by calculating a metric distance
between all the pair of stocks and (iii) by selecting the sub-
dominant ultrametric distance associated to the consid-
ered metric distance. The subdominant ultrametric is the
ultrametric structure closest to the original metric struc-
ture [25].

The correlation coefficient is defined as

ρij(∆t) ≡ 〈rirj〉 − 〈ri〉〈rj〉√
(〈r2

i 〉 − 〈ri〉2)(〈r2
j 〉 − 〈rj〉2)

(1)

where i and j are numerical labels of the stocks, ri =
ln Pi(t)−ln Pi(t−∆t), Pi(t) is the value of the stock price i
at the trading time t and ∆t is the time horizon which is,
in the present section, one trading day. The correlation
coefficient for logarithm price differences (which almost
coincides with stock returns) is computed between all the
possible pairs of stocks present in the considered portfolio.
The empirical statistical average, indicated in this paper
with the symbol 〈.〉, is here a temporal average always
performed over the investigated time period.

By definition, ρij(∆t) can vary from −1 (completely
anti-correlated pair of stocks) to 1 (completely correlated
pair of stocks). When ρij(∆t) = 0 the two stocks are un-
correlated. The matrix of correlation coefficient is a sym-
metric matrix with ρii(∆t) = 1 in the main diagonal.
Hence for each value of ∆t, n(n − 1)/2 correlation co-
efficients characterize each correlation coefficient matrix
completely.

A metric distance between pair of stocks can be
rigorously determined [27] by defining

di,j(∆t) =
√

2(1 − ρij(∆t)). (2)

With this choice di,j(∆t) fulfills the three axioms of a
metric – (i) di,j(∆t) = 0 if and only if i = j; (ii)
di,j(∆t) = dj,i(∆t) and (iii) di,j(∆t) ≤ di,k(∆t)+dk,j(∆t).
The distance matrix D(∆t) is then used to determine the
MST connecting the n stocks.

The MST, a theoretical concept of graph theory [28], is
the spanning tree of shortest length. A spanning tree is a
graph without loops connecting all the n nodes with n−1
links. We have seen that the original fully connected graph
is metric with distance di,j which is decreasing with ρij .
Therefore the MST selects the n−1 stronger (i.e. shorter)
links which span all the nodes. The MST allows to obtain,
in a direct and essentially unique way, the subdominant
ultrametric distance matrix D<(∆t) and the hierarchical
organization of the elements (stocks in our case) of the
investigated data set.

The subdominant ultrametric distance between ob-
jects i and j, i.e. the element d<

i,j of the D<(∆t) matrix, is
the maximum value of the metric distance dk,l detected by
moving in single steps from i to j through the path con-
necting i and j in the MST. The method of constructing a
MST linking a set of n objects is direct and it is known in
multivariate analysis as the nearest neighbor single link-
age cluster analysis [26]. A pedagogical exposition of the
determination of the MST in the contest of financial time
series is provided in reference [29]. Subdominant ultramet-
ric space [25] has been fruitfully used in the description of
frustrated complex systems. The archetype of this kind of
systems is a spin glass [30].

As an example of the results obtained with this method
here we briefly discuss the results obtained in refer-
ence [21], by investigating a set of 100 highly capitalized
stocks traded in the major US equity markets during the
period January 1995 – December 1998. At that time, most
of them were used to compute the Standard and Poor’s
100 index. The prices are transaction prices stored in the
Trade and Quote database of the New York Stock Ex-
change.

The time horizons investigated in the cited study varies
from ∆t = d = 6 h and 30 min (a trading day time inter-
val), to ∆t = d/20 = 19 min and 30 sec.

In Figure 1 we show the minimal spanning tree ob-
tained in this investigation with a time horizon equal to
one trading day. Stocks are identified with their tick sym-
bols. Information about the company indicated by each
tick symbol can be easily find in several financial web
pages such as, for example, http://www.quicken.com.
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Cluster of stocks which are homogeneous with respect to
the economic sectors of firms are clearly observed. Promi-
nent examples of clusters are the ones of (i) oil compa-
nies which is, to be precise, a cluster composed by two
separated sub-clusters, one including the companies SLB,
HAL, BHI, CGP and WMB (companies which are pro-
viding financial services to the oil industry and companies
of the gas industry) and the other one including MOB,
CHV, XON, ARC, OXY (companies of the oil industry);
(ii) financial (JPM, BAC, MER, USB, ONE, WFC, APX,
etc) and consumer/non-cyclical companies (KO, GE, PG,
CL, AVP, JNJ, etc); (iii) technology companies (MSFT,
INTC, TXN, CSCO, NSM, IBM, HWP, ORCL); (iv) ba-
sic materials companies (AA, WY, CHA, IP, BCC), and
(v) utility companies (BEL, AIT, GTE, SO, AEP, UCM,
ETR).

Equity time series are then carrying economic informa-
tion which can be detected by using specialized filtering
procedures. Therefore, price time series in a financial mar-
ket reflect information about the economic sector of activ-
ity of the company. This information is usually dressed by
the noise due to statistical fluctuations. Filtering proce-
dures, like the one we are proposing, are able to undress
the signals from the noise and reveal the more relevant
information.

3 Minimal spanning trees of stock portfolios
at different time horizons

In this section we discuss how the correlation structure of
a portfolio of stocks changes when the time horizon used
to compute the correlation coefficient is progressively de-
creased to an intraday time scale. It is known since 1979
that the degree of cross-correlation diminishes by dimin-
ishing the time horizon used to compute stock returns [31].
This phenomenon is sometime addressed as “Epps effect”.
The existence of this phenomenon motivates us to inves-
tigate the nature and the properties of the network asso-
ciated to a given financial portfolio as a function of the
time horizon used to record stock return time series.

In reference [21], some of us used the high-frequency
data of the transactions occurring in the US equity mar-
kets which are recorded in the Trade and Quote database
of the New York Stock Exchange. By using this database
we are able to investigate comovements of a set of highly
capitalized stocks for daily and intra daily time horizons.

A clear modification of the hierarchical organization of
the set of stocks investigated is detected when one changes
the time horizon used to determine stock returns. The
structure of the considered set of 100 US stocks changes
its nature moving from a complex organization to a pro-
gressively elementary one when the time horizon of price
changes varies from d = 23400 s to d/20, where d is
the daily time horizon at the New York Stock Exchange.
The amount of information processed consists of about
100 millions of transactions. The time horizons investi-
gated are ∆t = d = 6 h and 30 min (a trading day time
interval), ∆t = d/2 = 3 h and 15 min, ∆t = d/5 = 1 h and
18 min, ∆t = d/10 = 39 min and ∆t = d/20 = 19 min
and 30 sec. The shortest time horizon was chosen in order

to statistically ensure that for each stock at least 1 trans-
action occurs during the time horizon ∆t. The daily mean
number of transactions for the 100 selected stocks is rang-
ing from 11944.3 transactions of Intel Corp. (INTC) to
the 121.48 transactions of Mallinckrodt Inc. New (MKG).

The ‘Epps effect’ predicts that the intra-sector pair
correlation decreases by decreasing the time horizon ∆t.
In reference [21], authors show that the mean correlation
coefficient 〈ρ〉 obtained by averaging over the n(n − 1)/2
off-diagonal elements of the correlation coefficient matrix
is decreasing when ∆t decreases. The most prominent cor-
relation weakening is observed for the most correlated pair
of stocks (the ones having a correlation coefficient closes to
the maximum value ρmax). In fact, ρmax decreases from
0.76 to 0.52 when ∆t changes from 6 h and 30 min to
19 min and 30 s.

The decrease of the correlation between pairs of the
correlation based network of stocks affects the nature of
the hierarchical organization of stocks. The clusters ob-
served in Figure 1 progressively disappear and the ar-
rangement of the minimum spanning tree moves from
a structured and clustered graph to a simpler star-like
graph. Figure 2 shows the MSTs observed at different
time horizons ranging from d/20 to d/2. The change of
structure of the MST is indeed dramatic if one considers
the role of some highly connected stocks such as, in the
present case, GE. This stock has a degree, i.e. a coordi-
nation number, equals to 20 when ∆t = d/2 = 3 h and
15 min whereas this number grows up to 61 when the time
horizon is decreased to ∆t = d/20 = 19 min and 30 s.

It is worth pointing out that the change in the struc-
ture of the MST and hierarchical tree is not just a simple
consequence of the ‘Epps effect’. In fact, the changes ob-
served in the structure of the MST suggests that the in-
trasector correlation decreases faster than intersector cor-
relation between pairs of stocks of the considered portfolio
in a intra-day time scale [21]. These results show that the
topology of a correlation based network can be affected
by the sampling time used to monitor the time evolution
of the system. In other words, the system presents a non
trivial fast dynamics of stock returns realizing the com-
plex process of the price formation occurring in a financial
market.

4 The network of global financial market

A correlation based network can also be obtained by inves-
tigating index returns of stock exchanges located around
the world [23]. It is worth pointing out that the study of
the dynamics of stock exchange indices located all over the
world presents additional difficulties with respect to the
dynamics of a portfolio of stocks traded in a single stock
market. To cite just two of the most prominent ones –
(i) stock markets located all over the world have different
opening and closing hours; and (ii) transactions in differ-
ent markets are done by using different currencies that
fluctuates themselves the one with respect to the other.
It is then important to quantify the degree of similarity
between the dynamics of stock indices of nonsynchronous
markets trading in different currencies.
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Fig. 1. Minimum spanning tree of 100 highly capital-
ized stocks traded in the US equity markets. The fil-
tering procedure has been obtained by considering the
correlation coefficient of stock returns time series com-
puted at a 1 trading day time horizon (6 h and 30 min).
Each circle represents a stock labeled by its tick symbol.
The minimum spanning tree presents a large amount of
stocks having a single link and some stocks having sev-
eral links. Some of these stocks act as a “hub” of a
local cluster. Examples are INTC and CSCO for tech-
nology stocks, AIG, BAC and MER for financial stocks
and AEP for utilities stocks. The stock GE (General
Electric Co.) links a relatively large number of stocks
belonging to various sectors.

Fig. 2. Minimum spanning tree of 100 highly capitalized stocks traded in the US equity markets. The time scale ∆t used to
compute the correlation coefficients between stocks is smaller than one trading day. Specifically we show the MST obtained
with ∆t = d/20 (top left), ∆t = d/10 (top right), ∆t = d/5 (bottom left), and ∆t = d/2 (bottom right), where d is one trading
day.
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Reference [23] investigates two sets of data – (i) the
nonsynchronous time evolution of n = 24 daily stock mar-
ket indices computed in local currencies during the time
period from January 1988 to December 1996, and (ii) the
closure value of the 51 Morgan Stanley Capital Interna-
tional (MSCI) country indices daily computed in local cur-
rencies or in US dollars in the time period from January
1996 to December 1999. The stock indices used in this
research belong to stock markets distributed all over the
world in five continents. Here we briefly discuss the results
obtained with the set of Morgan Stanley Capital Interna-
tional (MSCI) daily indices computed in local currencies.

An analysis of daily data of closure values recorded
around the world may induce spurious correlations in-
troduced just by the different closure times of different
markets. The effects of nonsynchronous trading in time
series analysis are well documented in the economic lit-
erature [32–34]. In fact, different degrees of correlation
between the New York and Tokyo markets are estimated
depending if one consider the closure – closure between
the two markets or the closure – opening. In particular, it
has been empirically detected that the highest degree of
correlation between these two markets is observed between
the open-closure return of the New York stock exchange at
day t and the opening-closure of the Tokyo stock market
at day t + 1 [33].

Reference [23] overcomes this intrinsic limitations by
considering a week time horizon so that the nonsyn-
chronous hourly mismatch of index data is minimized. The
correlation coefficient is computed between all the possi-
ble pairs of indices available in the database. As usual,
the statistical average is a temporal average performed on
all the trading weeks of the investigated time period. Au-
thors obtain the n×n matrix of correlation coefficient for
weekly logarithm index differences. The 51 indices inves-
tigated in reference [23] belong to 51 different countries.
They comprise the so-called emerged and emerging mar-
kets. The indices and their symbols can be found at the
web site http://www.mscidata.com. The data are daily
data and covers the period 1996-1999. In Figure 3 we show
the result of the analysis performed in reference [23].

The graph of Figure 3 shows a clear regional clus-
tering. In fact, one can easily note an European clus-
ter linked to the North American stock exchanges. These
last stock exchanges are linked to Australian and New
Zealand stock exchanges. The clusters of South-American
and Asian (with the exception of Japan) stock exchanges
are also clearly recognizable. Once again, the correlation
based network shows clusters organized with respect to
an ordering principle, which is in this case the regional lo-
cation of stock exchanges. However, the topological prop-
erties of the graph are pretty different from the ones ob-
served for stock returns of a portfolio traded in a financial
market. In fact, the graph is characterized by a low num-
ber of the average degree of elements. Moreover, differently
from the case of the portfolio of stocks, the elements char-
acterized by a relatively high coordination number do not
coincides with the most capitalized stock exchanges.

Fig. 3. MST of 51 stock exchanges obtained by performing a
correlation based clustering starting from MSCI index returns
computed in local currencies and by using a time horizon of
one week.

In summary, reference [23] has shown that sets of stock
index time series located all over the world can provide
a correlation based network that is showing a regional
clustering but it is characterized by topological properties
pretty different than the one observed in a portfolio of
stocks traded in the same financial market.

5 Networks of volatility time series

Another investigation has been devoted to detect the net-
work of relation which is present among volatility time
series of stock prices traded in a financial market. Volatil-
ity is a key financial quantity controlling the risk profile
of a given financial asset traded in a market [12].

In reference [24] some of us investigate the statistical
properties of cross-correlation of volatility time series for
the 93 most capitalized stocks traded in US equity markets
during a 12 year time period. Data cover the whole period
ranging from January 1987 to April 1999 (3116 trading
days). In the cited study daily data are considered. In
particular, authors use for the analysis the open, close,
high and low price recorded for each trading day for
each considered stock. Starting from the daily price data,
volatility σi(t) is computed by using the proxy σi(t) =
2 [max{Pi(t)} − min{Pi(t)}]/[max{Pi(t)} + min{Pi(t)}]
where max{Pi(t)} and min{Pi(t)} are respectively the
highest and lowest price of the stock i at day t. It should
be noted that there is an essential difference between price
return and volatility probability density functions. In fact,
the probability density function of price return is an ap-
proximately symmetrical function whereas the volatility
probability density function is significantly skewed. Bi-
variate variables whose marginals are very different from
Gaussian functions can have linear correlation coefficients
which are bounded in a subinterval of [−1, 1] [35]. Since
the empirical probability density function of volatility is
very different from a Gaussian, the use of a robust non-
parametric correlation coefficient is more appropriate for
quantifying volatility cross-correlation. In fact, the volatil-
ity MSTs obtained starting from a Spearman rank-order
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Fig. 4. Minimum spanning tree obtained by considering the
volatility time series of 93 mostly capitalized stocks traded in
the US equity markets in August 1998. Each stock is identi-
fied by its tick symbol. The correspondence with the company
name can be found in any web site of financial information. The
volatility correlation among stocks has been evaluated by using
the Spearman rank-order correlation coefficient. The MST has
been drawn by using the Pajek package for large network anal-
ysis http://vlado.fmf.uni-lj.si/pub/networks/pajek/.

correlation coefficient are more stable than the ones ob-
tained starting from the linear (or Pearson’s) correlation
coefficient [24]. An example of the MST obtained starting
from the volatility time series and by using the Spearman
rank-order correlation coefficient is shown in Figure 4. A
direct inspection of the MST shows the existence of well
characterized clusters. Examples are the cluster of technol-
ogy companies (HON, HWP, IBM, INTC, MSFT, NSM,
ORCL, SUNW, TXN and UIS) and the cluster of energy
companies (ARC, CHV, CPB, HAL, MOB, SLB, XON).
As already observed in the MST obtained from the price
return time series, the volatility MST of Figure 4 shows
the existence of highly connected stocks. Examples are
GE, JPM, and DD. The topology of the network is not
too different from the topology of the network obtained
from return time series sampled at the same time hori-
zon (Fig. 1). Investigations on large sets of stocks would
be needed to estimate if a quantifiable topological differ-
ence exists between return and volatility correlation based
networks.

6 Topology of networks in financial markets

In the previous sections, we have discussed the shape and
topology of several networks obtained by using a correla-
tion based clustering procedure. In all cases, networks are
carrying a clear economic meaning. However a difference
in the topological properties is sometime observed when
the set of data is ranging from stock portfolios to a set
of stock indices or to the volatility time series of a stock

Fig. 5. MST of real data from daily stock returns of
1071 stocks for the 12-year period 1987–1998. The node sym-
bol is based on the Standard Industrial Classification system.
For the correspondence see the text.

portfolio. The topological properties are also sensitive to
the sampling time of the time series used to compute the
correlation coefficient matrix. It is therefore worth to in-
vestigate more deeply the relation between the topological
property of correlation based networks and some simple
but widespread market models.

In reference [22] some of us compare the topologi-
cal properties of the MST of empirical data recorded at
the New York Stock Exchange with MSTs obtained from
simple models of the portfolio dynamics. Specifically, au-
thors consider a model of uncorrelated Gaussian return
time series and the widespread one-factor model. This last
model is the starting point of the Capital Asset Pricing
Model [12]. The topological characterization of the cor-
relation based MST of real data was originally investi-
gated in reference [9]. In their study, authors investigated
a portfolio of approximately 6000 stocks by estimating
the correlation coefficient on a yearly time period by us-
ing approximately 250 daily data. Here we discuss the re-
sults obtained in the study of reference [22], where authors
use a smaller number of stocks n and a larger number of
daily records T . This choice is motivated by the request
that the correlation matrix be positive definite. In fact,
when the number of variables is larger than the number
of time records the covariance matrix is only positive semi-
definite [26].

The data set used in reference [22] consists of daily clo-
sure prices for 1071 stocks traded at the NYSE and contin-
uously present in the 12-year period 1987–1998 (3030 trad-
ing days). The ratio T/N � 2.83 is significantly larger
than one and the correlation matrix is positive definite.
Figure 5 shows the MST of the real data. The symbol
code is chosen by using the main industry sector of each
firm according to the Standard Industrial Classification
system for the main industry sector of each firm. Again
regions corresponding to different sectors are clearly seen
on a very large scale. Examples are clusters of companies
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Fig. 6. MST obtained by a realization of a random model of
1071 Gaussian uncorrelated time series of length 3030.

belonging to the financial sector (white diamonds), to the
transportation, communications, electric gas and sanitary
services sector (black squares) and to the mining sector
(white circles). The mining sector companies are observed
to belong to two subsectors one containing oil companies
(located on the right side of the figure) and one containing
gold companies (left side of the figure).

The empirical MST of real data can be compared with
the results obtained from simple models of the simul-
taneous dynamics of a portfolio of assets. The simplest
model assumes that the return time series are uncorre-
lated Gaussian time series, i.e. ri(t) = εi(t), where εi(t)
are Gaussian random variables with zero mean and unit
variance. This type of model has been considered in refer-
ences [14,15] as a null hypothesis in the study of the spec-
tral properties of the correlation matrix. It is well known
both in the financial and in the econophysics literature
that a random model does not explain the empirical obser-
vation of financial time series. This conclusion is consistent
with the observation that topological properties of MSTs
of random market models are pretty different from the
ones obtained from real data. In the MST obtained with
the random model few nodes have a degree larger than
few units. In Figure 6 we show one of this MST obtained
for an artificial market described by a random model. In
Figure 6 it is clear that the MST is composed by long files
of nodes. These files join at nodes of connectivity equal
to few units (the typical maximal value observed is close
to 7). In other words, a market based on a random model
has a network characterized by a topology essentially dif-
ferent from the one observed in real data.

A better modeling of the dynamics of a portfolio is
obtained by using the one-factor model. The one-factor
model assumes that the return of assets is controlled by
a single factor (or index). Specifically for any asset i we
have

ri(t) = αi + βirM (t) + εi(t), (3)
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Real data

Fig. 7. Empirical probability density function of the correla-
tion coefficients of a portfolio of 1071 stocks traded at NYSE
in the 12-year period 1987–1998 (continuous line). The dashed
line is the corresponding probability density function of a re-
alization of the one-factor model with parameters fitted from
real data.

where ri(t) and rM (t) are the return of the asset i and of
the market factor at day t respectively, αi and βi are two
real parameters and εi(t) is a zero mean Gaussian noise
term characterized by a variance equal to σ2

εi
. The param-

eters of the model can be obtained from the real data by
ordinary least square method. Our choice for the market
factor is the Standard and Poor’s 500 index. The one-
factor model is able to reproduce quite well the distribu-
tion of correlation coefficient of the real data. In Figure 7
we show the probability density function of correlation co-
efficient for real data and for the one-factor model. It is
worth noting that the one-factor model is able to explain
more that 80% of the correlation coefficients observed in
real data. Therefore one could naively expect that also the
correlation based MST of the one-factor model is quite
similar to the correlation based MST of the real data.

On the contrary the MST obtained with the one-factor
model is very different from the one obtained from real
data. In Figure 8 we show the MST obtained in a typ-
ical realization of the one-factor model performed with
the control parameters obtained as described above. It is
evident that the structure of sectors of Figure 5 is not
present in Figure 8. In fact the MST of the one-factor
model has a star-like structure with a central node. The
largest fraction of node links directly to the central node
and a smaller fraction is composed by the next-nearest
neighbors. Very few nodes are found at a distance of three
links from the central node. The central node corresponds
to General Electric and the second most connected node
is Coca Cola. It is worth noting that these two stocks
are the two most highly connected nodes in the real MST
also. The reason of the difference between the real and
the one-factor model MST (despite the similarity in the
distribution of the correlation coefficients) is attributable
to the noise dressing. A great fraction of the correla-
tion coefficients is heavily dressed by noise due to the
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Fig. 8. MST of a numerical simulation of the one-factor model.
The symbol code is the same as used in Figure 6.

finiteness of the time series. The effect of dressing is similar
in real and in surrogate time series because the length of
the time series has been chosen equal. On the other hand
the method used to obtain the MST filters part of the rele-
vant information of the correlation matrix, discarding the
information more heavily dressed by the noise. The MST
procedure therefore undress the correlation matrix, reveal-
ing the great differences between real and model data. We
want to stress that the difference in the topology between
MSTs can be made more quantitative. In reference [22]
some of us conducted numerical simulations to show that
some topological quantities (the degree and the in-degree
distribution) of real and one-factor MST are different with
95% statistical confidence.

In summary, the investigation of the topological prop-
erties of correlation based networks is able to discriminate
between real data and artificial data obtained with simple
but widespread market models.

7 Conclusions

Correlation based networks can be obtained in financial
markets by investigating a certain number of different fi-
nancial time series. Here we have reviewed results obtained
by us in different studies. Specifically, the discussed stud-
ies have been concerning returns of stocks traded in a
financial market at fixed or variable time horizon, volatil-
ity time series and index returns of stock exchanges lo-
cated all over the world. The networks are obtained with a
well-defined filtering procedure [8], which mainly focuses
on the most relevant correlations among stocks. Differ-
ent filtering procedures have been proposed by different
authors [17–20] and provide different aspects of the in-
formation stored in the investigated sets. The robustness

over time of the MST characteristics has been investigated
in a series of studies [36–39,24]. The filtering approach
based on the MST can also be used to consider aspects
of portfolio optimization [40] and to perform a correlation
based classification of relevant economic entities such as
banks [41] and hedge funds [42].

The topology of the correlation based networks de-
pends on the investigated set and on the details of in-
vestigation (an example is the dependence observed for
the time horizon used to compute the stock returns in the
investigation discussed in Sect. 3). The observed topology
ranges from the star-like one of the top-left panel of Fig-
ure 2 to the complex multi-cluster structure of Figure 1.
Other networks have a relatively poor number of elements
characterized by a high value of their degree. This last
topology may be consistent with the topology observed
in a correlation based network of a random financial mar-
ket. On the other hand, the star-like topology is consistent
with a dynamical model defined as a one-factor model.

In summary, the study of correlation based financial
networks is a fruitful method able to filter out economic
information from the correlation coefficient matrix of a
set of financial time series. The topology of the detected
network can be used to validate or falsify simple, although
widespread, market models.
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